Alkene Hydrogenation (Dihydride Intermediate)

- \blacksquare [RhCl(PPh₃)₃] (Wilkinson's Catalyst)
- \blacksquare [{Rh(NBD)(m-Cl)}₂] + 4 PR₃ or [{Ir(COD)(m-Cl)}₂] + 4 PR₃
- \blacksquare [Ir(COD)(PMePh₂)₂][PF₆] or [Ir(COD)(PCy₃)(Py)][PF₆]
- \blacksquare [Rh(NBD)(bidentate phosphine)][PF₆]
- (NBD = norbornadiene)
- \bullet (COD = 1,5-cyclooctadiene)

- Note: Hydrogenation involves 1,2-insertion, so *syn*-addition to the alkene is observed.
- Note: Less substituted alkenes are hydrogenated faster.

Alkene Hydrogenation (Monohydride)

Asymmetric Hydrogenation

- Two enantiomers may be formed from a prochiral alkene (or ketone or imine)
- With a suitable chiral metal complex, the alkene will bind predominantly through one face. This is the face that is hydrogenated, giving predominantly a single enantiomer.
- Asymmetric hydrogenation is possible because the last step of the catalytic cycle is irreversible \rightarrow kinetic products.
- 2001 Nobel Prize for William Knowles and Royoji Noyori.

Asymmetric Hydrogenation

Hydrogenation

What about other substrates?

 The C=O and C=N bonds of ketones and imines are only reduced by certain catalysts {*e.g*. [M(diphosphine)]+ (M = Rh or Ir), [RuCl₂(diphosphine)] or [CpRe(CO)(PPh₃)]⁺}

- Aryl rings are NOT reduced by the usual catalysts (see below).
- \blacksquare CN, NO₂, ester or amide groups are NOT reduced by the usual catalysts.

Arene Hydrogenation

- Several heterogeneous catalysts can do this (*e.g*. Rh/C)
- None of the catalysts discussed so far will hydrogenate arenes

Monsanto Acetic Acid Process

- Used to produce 3.8 million tonnes of MeCO₂H p.a. Most of this acetic acid is converted to acetic anhydride (used in the synthesis of cellulose acetate and asparin, *etc.*). Eastman has a similar process to the Monsanto process which produces acetic anhydride directly.
- Monsanto acetic acid process runs at 180 ^oC and 30-40 atm of CO.
- Rate determining step is oxidative addition of MeI.

Olefin Hydrosilation

- One of the earliest catalysts was H_2PtCl_6 (Speier's Catalyst) – originally thought to be homogeneous but more likely that catalysis is due to colloidal platinum metal.
- **Homogeneous** catalysts include $\mathsf{(CO)}_{8}$, Ni(COD)_2 , $\text{NiCl}_2(\text{PPh}_3)_2$ and $RhCl(PPh₃)₃$

Co-Catalyzed Alkene Hydroformylation

Alkene Hydroformylation

Problems with the cobalt catalyzed hydroformylation reaction:

- Ratio of linear to branched aldehydes is $4:1$ at best.
- Catalyst is unstable, so its separation and recovery are difficult
- High temperature (140-180 °C) and pressure (200-300 atm) of CO required \rightarrow plants are expensive to build and operate

HRh(CO)(PPh³)³ has many advantages over cobalt catalysts:

- 100 to 1000 times more active
- **Pressure (15 to 25 atm) and temperature (80 to 120 °C) are much lower than needed for** cobalt catalysts (200-300 atm and $140-180$ °C).
- Linear to branched ratios as high as 14:1 are obtained. Only the linear product is commercially valuable.
- **•** HRh(CO)(PPh₃)₃ is also an excellent isomerization catalyst. Therefore, in the hydroformylation of $H_2C=CH-CH_2$ –Me or Me–CH=CH–Me, the major product is Me–CH₂–CH₂–CH₂–CHO.
- Advantages far outweigh the drawback of having to recover the expensive Rh catalyst {rhodium is 500 to 5000 times more expensive than cobalt (depends on the year)}.

Rh-Catalyzed Alkene Hydroformylation

