Alkene Hydrogenation
@on)  (Dihydride Intermediate)

= [RhCI(PPh,);] (Wilkinson’s Catalyst)

= [{Rh(NBD)(m-Cl)},] + 4 PR; or [{Ir(COD)(m-Cl)},] + 4 PR, = (NBD = norbornadiene)
= [Ir(COD)(PMePh,),][PF] or [Ir(COD)(PCy,)(Py)l[PF] = (COD =1,5-cyclooctadiene)
= [Rh(NBD)(bidentate phosphine)][PF]
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= Note: Hydrogenation involves 1,2-insertion, so syn-addition to the alkene is observed.
= Note: Less substituted alkenes are hydrogenated faster.



Alkene Hydrogenation (Monohydride)
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Asymmetric Hydrogenation
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= Two enantiomers may be formed from a prochiral alkene (or ketone or imine)

= With a suitable chiral metal complex, the alkene will bind predominantly through one face.
This is the face that is hydrogenated, giving predominantly a single enantiomer.

= Asymmetric hydrogenation is possible because the last step of the catalytic cycle is
irreversible - kinetic products.

= 2001 Nobel Prize for William Knowles and Royoji Noyori.
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Asymmetric Hydrogenation
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Hydrogenation

What about other substrates?

= The C=0 and C=N bonds of ketones and imines are only reduced by certain catalysts

{e.g. [M(diphosphine)]+ (M = Rh or Ir), [RuCl,(diphosphine)] or [CoRe(CO)(PPh,)]*}
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= Arylrings are NOT reduced by the usual catalysts (see below).
= CN, NO,, ester or amide groups are NOT reduced by the usual catalysts.

Arene Hydrogenation
= Several heterogeneous catalysts can do this (e.g. Rh/C)
= None of the catalysts discussed so far will hydrogenate arenes
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Monsanto Acetic Acid Process
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Used to produce 3.8 million tonnes
of MeCO,H p.a. Most of this acetic
acid is converted to acetic anhydride
(used in the synthesis of cellulose
acetate and asparin, etc.). Eastman
has a similar process to the
Monsanto process which produces
acetic anhydride directly.

Monsanto acetic acid process runs at
180 °C and 30-40 atm of CO.

Rate determining step is oxidative
addition of Mel.
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One of the earliest
catalysts was  H,PtCl,
(Speier’s Catalyst) —
originally thought to be
homogeneous but more
likely that catalysis is due
to  colloidal platinum
metal.

Homogeneous  catalysts
include Co,(CO),
Ni(COD),, NiCl,(PPh), and
RhCI(PPh;),



Co-Catalyzed Alkene Hydroformylation

O minor product HCo(CO),
H
+ -CO
O major product
H " AN
(OC);Co
H, %
OA, then RE . )
or 1 ikene = Discovered in 1938 by Otto
-bond tathesi ene .
o-bond metathesis coordination Roelen at Ruhrchemle.
0 = Sometimes called the oxo
)\\/\ process.
(OC)3Co\ ! = 6.6 million tons p.a. (1998)
% / = Rhodium and cobalt catalysts
(OC);Co . .
o 45 >// used industrially.
(OC)3CO)\(
N
O
1,2-insertion,
1,1-insertion then CO coordination

[S)

O

e ¥

)

O
j\
9)
o



Alkene Hydroformylation

Problems with the cobalt catalyzed hydroformylation reaction:

= Ratio of linear to branched aldehydes is 4:1 at best.

= (Catalyst is unstable, so its separation and recovery are difficult

= High temperature (140-180 °C) and pressure (200-300 atm) of CO required =
plants are expensive to build and operate

HRh(CO)(PPh;); has many advantages over cobalt catalysts:

= 100 to 1000 times more active

= Pressure (15 to 25 atm) and temperature (80 to 120 °C) are much lower than needed for
cobalt catalysts (200-300 atm and 140-180 °C).

= Linear to branched ratios as high as 14:1 are obtained. Only the linear product is
commercially valuable.

= HRh(CO)(PPh;); is also an excellent isomerization catalyst. Therefore, in the hydroformylation
of H,C=CH-CH,—Me or Me—CH=CH-Me, the major product is Me—CH,—CH,—CH,—CHO.

= Advantages far outweigh the drawback of having to recover the expensive Rh catalyst
{rhodium is 500 to 5000 times more expensive than cobalt (depends on the year)}.



Rh-Catalyzed Alkene Hydroformylation
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